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A SKQUENTIAL OTOCHASTIC AßniGNMENT PRORI-EM 

by 

Cyrus Derraan, Gerald J. Lieberman, and Sheldon M. Ross 

0. Sunurary 

Suppose tnere are   n   men available to perform   n   Jobs.    The   n 

Jobs occur in sequential order with the value of each Job being a 

random variable   X.   Associated with each man is a probability   p. 

If a    "p"   man is assigned to an   "X - x"   Job, the (expected) reward 

is assumed to be given by    inc.   After a man is assigned to a Job, 

he is unavailable for future assignments.    The paper is concerned 

with the optimal assignment of the   n   men to the   n   Jobs so as to 

maximize the total expected reward.    The optimal policy is characterized, 

and a recursive equation is presented for obtaining the necessary 

constants of this optimal policy. 

In particular, if   Pi < Pp < ••• < P     the optimal choice in 

the initial stage of an   n    stage assignment problem is to use    p, 

if    x    falls into an i     non-overlapping interval cctnprising the real 

line.    These intervals depend on   n   and the CDF of   X,    but are inde- 

pendent of the    p's. 

The optimal policy is also presented for the generalized asijignaient 

problem,  i.e.,  the assignment problem where the  (expected) reward if 

a    "p"   man is assigned to an    "x"   Job is given by a function   r(p,xj. 

1. Introduction 

The sequential stochastic assignment problem can be described as 

follows.    Suppose there are    n   men available to perform   n    jobs. 
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Tli-     ii    jabü anlV'.   In sequential order,  I.e.,  firat Job i appears, 

followed by Job 2, •.'c.    Ancociated with the J        (j » 1,2,  ...   , n) 

job  la u  randmn variable    X,    wlilch takea on the value   x..    It will 

i • äüauraed that,  the   X'r.   ar«.- Independent and Identically distributed 

r-iibm variables.    This j      Job is then referred to as a "type   x." 

Job.     if a   "perfect" man la asalgned to the type    x.    Job, a reward 

x.     la obtained (the type job ray then be viewed as the maximum poten- 

tiai value of a Job)      However, none of the    n   men may be perfect, 

and whenever the i      man is assigned to any type   x.    Job, the 

(expectea) reward is given by    PJX.,    where    0 < p. < 1,— 

i --   l,2,...,n are known constants.    After a man is assigned to a Job, 

he  Is unavailable for future assignments.    The problem is to assign 

the    n   men to the    n   jobs so as to maximize the total expected 

reward.    An assignment of men is equivalent to a sequential assignment 

of the    p's    to the   X's.    Let a policy be any rule for assigning 

men to jobs.     In particular,  if the random variable    i.     is defined 

to  be the man  'Identified by number) assigned to the J      arriving 

job,   then  the  total expected reward is given by 

ii) Sv X 
J = l 

and the desired policy is the one which maximizes (l).  It should be 

noted that (i ,i., ... , i ) is a random permutation of the integers 

1,2, ... , n. 

-   Actually,  the constraint,    o < p.  < 1,    is given for clarity of 

application, and none of the ensuing results are dependent upon it. 

  - -        ■-■....—■     -      -   ^.-^^^^ ->-Ji,-j-^^.^M-lJ.^.-J^-i^^^.J:^.-,.   .      ■       .L. 
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There are other interpretations of the above model which may b^ 

usei'ui to the reader.    Suppose there exists    n   cards.    Associated 

with the i     card is a probability   p..    A sequence of independent 

identically distributed random variables   X^X«,  ...   , X     are observed 

in a sequential manner.    When the random variable   X.    appears, a card 
+ Vi 

must be chosen and played on that random variable.    If the i     carl 

is played when   X. - x.    is observed, then the expected reward is 
0        J 

given by   Pi*..    An example of this form occurs when   x.    is received 

with probability   p.    and zero is received with probability   1 - p.. 

The problem is to choose the   n   plays of the cards to maximize the 

total expectea reward, i.e., maximize (1). 

Finally a special case of this model is a generalization of the 

"house hunting" problem [1].    Suppose that there are    k < n    Identical 

houses to be sold.    Offers arrive in a sequential manner.    These 

offers will be assumed to be a sequence of independent identically 

distributed random variables   X^Xg,  ...   , X .    The seller may accept 

or reject the offers but must dispose of all    k   houses by no later 

than the n   l offer.    In the above "card interpretation" let    k    of 

the cards have associated   p's    equal to 1 and let    (n-k)    of the 

cards have associated    p's    equal to 0.     If the seller accepts the 

j      offer he assigns it a card having an associated   p   equal to 1 

and receives   x.,    and that house and card become unavailable.    If 

the seller rejects the j      offer he assigns it a card having an associ- 

ated   p   equal to 0 and hence receives nothing.    This procedure con- 

tinues until all the houses (and cards) are disposed of.    The problem 

is to determine which offers to accept in order to maximize the total 

expected profit (or reward), i.e., maximize (l). 
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Section 2 characterizes the optimal policy, and presents a recursive 

equation for obtaining the constants of the optimal policy.    In Section 

5,   it  is assumed that the choice of the values of    p    is available to 

the decision maker, and results are presented for an optimum allocation. 

Section k contains a detailed example which illustrates the concepts 

presented in the earlier sections.    Finally, Section 5 generalizes 

the assignment problem to include the case where the (expected) reward 

if a    "p"   man is assigned to an    "x"   job is given by a function 

r(p,x), 

2.       Optimal Policy 

The key result needed to determine the optimal policy is to show 

that it is of the following form.    If there are    n    stages to go (n 

n to assign or   n    cards to play) and probabilities    p. < p0 < ••• < p„> ra 

then the optimal choice in the initial stage is to use    p.    (implying 

.th 
using the i i man or the i  card in the appropriate interpretation) 

if the random variable X falls into an i  non-overlapping interval 

comprising the real line. Furthermore; these intervals depend on n 

and the cumulative distribution function n   X but are independent 

of the p's. 

In proving the main result, a well known theorem due to Hardy [2] 

will be used 

Lemma (Hardy ' a Tbeorem).  If x, < x0 < • • • < x  and y, < y« < ' • • < y 
  '   J j.= 2=   =n     ,'1 = ,'2=   = ' n 

are sequences of numbers, then 

(2) max £ x. y 
(i^i^,...,^)^ J=l ^ J 

j=l J J 

■^.»i ,£■■«i ■M^tt,i'nM„.WJ.ja^.j^. 



where   P   is the set of all permutations of the integers    (1,2,   ...   , n), 

This result implies that the maximum sum is achieved when the smallest 

of the   x's    and   y's    are paired, the next smallest of the   x's    and 

y's   are paired, and continued until the largest of the   x's    and   y's 

are paired. 

The following notation will now be introduced:    Let 

f(P1*P2* ••• > Pn) Total expected reward under an optimal 

policy when the probabilities are 

P1,P2, ' V 
f(p ,pp,  ...   , p |x) = Total conditional expected reward given 

X, = x   under an optimal policy when 

the probabilities are   P^JPO*  • • •   > P,,- 

That, in fact, optimal policies exist can be shown by induction. 

Denote by   GY(z)    the cumulative distribution function of the random 

variable   X.    It is assumed that   X1,X2,  ...   , X     are independent 

identically distributed random variables with CDF   Gx(z),    and that 

H = E(X) =   \     zdGx(z) < «. 

The optimal policy is embodied in the following theorem which 

will be proven by induction. 

Theorem 1. For each n > 1, there exist numbers 

-«sa,.  <a,  <a„  <,,,<a   =+» 
0,n m   l,n —   2,n =   m   n,n 

such that whenever there are n stages to go and probabilities 

p < Pp < • • • < p  then the optimal choice in the initial stage 

is to use p.  if the random variable X, is contained in the interval 

-'-t- — f ! ■ r  i ^■^-. — ■^   . ^ .■> .. .  -  ^fc|1tr, , ,.^_..;_.. 



(a a 
,1.     i 

Tiu a.        depend on    Qv    but are independent of the 
i ,n X 

p's.     Furttiermore    a. is the expected value,   in an (n-l)  stage 
1,11 

,th prübiem,   of tho quantity to which the i      smallest    p    is assigned 

(aJsumint' an optimal policy is being followed),  and 

n-l 
(.))   n.P^,...^)  =    D   P.a.^    for all    P1 < P2 <  • • • < P^ . 

i=l 

Proof. A proof by induction is employed.  Suppose that there exist 

numbers  la.  i™' . m = 1,2, ... , n-l such that the optimal policy 
jttn 0 = 1 

in an m stage problem is to initially use the i  smallest p if 

the initial value is contained in the interval (a    ,a  1, where i-l,m    i,m 

a        =  -«■    and    a        = «>.    Then,  in the    n    stage problem where    p, 
0,ra m,m 0 K 

is  selected  first 

CO     f(Pi;P2.---.Pnlx) = max[xpk + f(P1>P2>->->Pk.i»Pk+i>"-'Pn^   • 
k 

However, by the induction hypothesis., it follows that the optimal 

policy for an (n-l) stage problem is independent of the (n-l) 

values of p. Henc^- defining a.   as the expected value (under i ,n 

the optimal policy) of the quantity to which the i      smallest    p 

is assigned in the  (n-l)  stage problem,  the total expected reward 

of that   problem  is  given by 

n-l 
'5.1 f(pl'P2 PnJ  -  £  Piai,n 

1=1 

)r every    p   < p^ <  • • ■ < p (the    p^p,,   ...   , P„ -,    represent 
i —    c —■ — n-a.        x c. n-x 

le remaining (n-l) p's of the original n p's after the first, 

c., p., is chosen in the n stage problem). Furthermore, since 

^.-*~~. .HI.. ~. .......   ^    ;... .,  ■■ ■ „■■  ■■ -..■ ....-^ ,.■,.. „  i in in 
i. .„■— -. c... a. .... 
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a.        is independent of the   p's    and other policies are obtained by 

n-1 
permuting the p's, any sum of the form £ V1'" (where 

J-l'    Jo*    ' * *    '    J| is a permutation of the integers) can be obtained 
'1'  Jg' ' "n-l 

for the total expected rewari   of the    (n-l)    stage problem.    Hence, 

using Hardy's theorem (lemma l)  it follows that 

(6) a,     < a„     < • • • < a    ,      , l,n =   2,n sä =   n-l,n ' 

since by the induction assumption f(p1,p2, ... > P J must be a 

maximum. 

Using the results of (5) and (6), equation {k)  can now be expressed 

as 

(7)     fCP-LiPg/.-iPnU) » max xpk + I '^+ t-L P^-M] 
Again, using Hardy's theorem (lemma l), 

f(p 
k*'l 

!>%,  ...  , Pjx) = xpk# + ^   piai^n + ^^ Piai_1^ 

where k* is such that (with a.  = -», a   =•*<«) 0,n n,n 

a, „ T      < x < a k*-l,n «s   k*,n 

This result follows because the    p's   and   a's   are ordered so 

that if   x    is greater than or equal to the    (k*-l)    smallest   a, 

then the corresponding   p    (i.e.,    p   )    must be greater than or 

equal to the    (k*-l)    smallest   p.    Hence, the first choice in an   n 

stage problem is to choose    p.    if   x G (a ,a      ].    Noting that 
i i"-L, n i ,n 

the result is trivial for n = 1 completes the induction.  Equation 

i   \ 
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(.5)  followj Immediately from equation (5), and the theorem is complete. 

rhforera I presents the form of the^optimal policy, but does not 

LtullcaLe t. w tu   »btuln the   a,     .    The constants may be calculated l,n 

from th<' rt-sulta of Corollary 1. 

Coroalary l.    Define   a.      ^ -»,    a       = +».    Then 
 "— ü,n n,n 

/^i,n 
(3)    «*. -   / zdav(z)  + a.   .    G(a.  ,    ) + a,    (1-0(8,    )] , l,M + i     J X i-l,n v i-l,^        l^n1      v i,n/J ' 

i-l,n 

for    1  -- 1,2, ...   , n,   where    -00 • 0   and   « • 0   are defined to be   0. 

Proof.    The result follows by recalling that   a. is the expected 

value,   in an   n    stage problem,  of the quantity to which the i 

smallest    p   is assigned.    The r suit then follows by conditioning 

on the  initial   x,    and recalling that   p.    is used if and only if 

this value lies in the interval    (a.   ,    ,a,     1. l-l,n    i,n 

The previous results assume that the   X's   are independent, 

identically distributed random variables.    An alternative set of 

conditions leads to the  following theorem. 

Theorem <?•    Suppose that the successive values    X, ,X2,   ...   , X     form 

a   sub-martingale,  i.e., 

ElX.lx., X,,   ...   , X,  ,j > X, ,,    for all   J > 2 , 
J       1 c J-J.     =     J-X « 

tl  -n the  optimal policy  is to use    p ,    then    p2,   ...   ,    and finally 

p   ,    whenever    p.  < p. <   • • •  < p  . 
•n rl =■ r2 - —    n 

Proof.     Again, a proof by  induction is employed.    The result is trivial 

.     ^ .-__    ^...^.^. _   ^_—^.^       ... .J^r^v^..  .......^J^M—;.. ^I^L^ ^ .^,;^ t--,■■ -I.L...    ... . .   .. .. ^...,    ,      .   ^.^,J.„, ^.-.....^^|., 



for   n - 1.    Assume It Is true for all   m < n-1.   For the   n    stage 

problem where   p.     Is selected equation (k)  still holds.    However, 

by the induction hypothesis, the optimal policy is specified for the 

(n-l) stage problem, and the total expected reward for this optimal 

policy in the    (n-l)    stage problem can easily be expressed in terms 

of the conditional expectations of the ensuing   X's   given     X-, = x. 

Hence, equation (k) reduces to 

(9) 

f(P1> P2*   •••  > P |x) = max 
k 

k-1 
xpk +  £ PiE[xi+ilxi = x] 

i=l 

n 
+     £     PiE[X 

i*k+l 
ilxi = x]     . 

Using the properties of sub-martingales, it follows that   E[X. Ix, 

is monotone increasing in   i,    for    i > 1.    Again, using Hardy's 

theorem (lemma l),  it follows that 

= x] 

n 
(10) f(p1, P2,  ...  , pjx) ■-. xp1 +   2  PiEtXiiXi = x]  ' 

and the induction is complete. 

It can be remarked that if the successive values   X,,Xpt  ••.   , X 

form a super-martingale, i.e., 

E[X.|X;L, Xg,   ...   , X      J < X,  1    for all    J > 2  , 
J 

then the same reasoning shows that the optimal ordering is 

P <P    -i >  • • •   > PT    whenever   p^ < p0 < • • ■  < p . *rr n-l' ' cl ^1 = ^2 = = rn 

J.      Allocation of p's 

In the previous sections it was assumed that the    p's    were a 

■«■* MI* rll! >■ 1 ■ ^m^tjti^t^^^ 



fixed set of given numbers.    An extension is to allow the   p'a    to be 

determined in some optimal fashion.    In the context of the stochastic 

sequential assignment problem, a company has the opportunity to hire 

skilled men, i.e., those having large    p's,    but at the expense of 

large salaries.    In particular, suppose that    c(p)    denotes the cost 

to retain a man having an associated p. Let a.^a^, ... , a  denote 

the expected value of the quantity to which the i  smallest p is 

assigned (these a's are the a    's of Section 2 except that 

the second subscript is surpressed; since only an n stage problem 

is being considered no confusion should result). Then the appropriate 

total expected reward for a given allocation Pn^Po* ••• * Pn* where 

Pi < P2 < •"' ^ Pn* 
is given by 

n       n        n 

(11) cp(P1iP2>..-,P ) = E Vi " ^ c(pi) s ^ [Vi"0^1 • 
1=1     i=l       1=1 

The problem can now be stated as follows: 

maximize   qKP-^ P2*  • • •   > Pn) 

subject  to 

(12) 0 < p.  < 1,    i = 1, 2,   ...   ,  n 

and 

'15) pl = p2 = ■" = Pn ' 

and solutions are presented for the following five cases. 

Cast  1: 

If    c(p) = c  •   p    with    c > 0,    then 

10 
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^(p^ P2' ••• ' pn) = S (a1-
c)pi • 

i-1 

It is evident that cp(p,>Pp» ... , p ) is maximized subject 

only to (12) if p. = 1 when a - c > 0> and p. » 0 when a -c < 0. 

However, It has alre&dy been shown in expression (6) that 

a, < a0 < ■■• < a . Hence^ choosing i* so that it is the smallest 
1=2=   = n      ' ^ 

integer such that ^ - c > 0 (if all the a - c < 0, then i* 

may be interpreted as equal to n+l) it follows that the optimal 

values of p. subject to (12) are 

Pi = 0, for i < i* 

and 

p, = 1, for i > i* i — 

However, this solution also satisfies (l?) so that it is a solution 

to the problem.    Note also that the    a  "s,    and hence    i*,    are 

calculable by corollary 1. 

Case 2: 

If c(p) = cp + bp  where c > 0 and b > 0, then 

■ n 
9(P1^ P2i •-• . Pn) - £ t(ai-c)pi - bpi] 

Each (a.-c)p. - bp. is maximized ai 

I and 

a - c 
p. =  5—, for (ai-c) > 0 

P1 - 0   , for (a^c) < 0 

11 
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Therefore, the optimal values of p. subject to (12) are 

Pi - 0        , for 1 < 1* 

and 

p. = min l-r—, 11, for 1 > i* , 
,ai-c 

where i*    is the smallest integer such that a. - c > 0. If all the 

a - c < 0, then i* may be interpreted as equal to n+1. Note 

that this solution also satisfies (IJ) so that it is a solution to 

the problem. 

Case j: 

If   c(p)    sati.-fies   c(o) = 0   and   c(p)    is non-decreasing and 

convex, then 

n 
CPCP^ P2^  •••  , Pn) =   E  t8!?! ' c(Pi)]  ' 

Using the same argument given for Case 2 and noting that   a p -c(p.) 

i • concave in    p,    the optimal solution takes on the form 

p.  = 0 ,    for    i < i* ri 

and 

p.  = min (pSl),    for    i > 1* , 

where    i*    is the smallest integer such that    a    - c^o) > 0   and 

p*    satisfies    a.   - c'(p*) = 0.     If all the    a^^ - c'Co) < 0,    then 

i«    may be  interpreted as equal to    n+1. 

Case k 

If    c(p)    satisfies    c(o) = 0   and    c(p)    is non-decreasing and 

12 

     -" - - .., ■ ■■■«■■ ii iP in i HI      [ fti atiriMt i^iJuujH^j^yg^g^gg^^^g^^^g 



concave, then 

n 
(P(P1, Pg, ... i pn) - 2 [aiPi ■ c(Pi^ • 

Following the same argument as in the two preceding cases and noting 

that    a p   - c(pi)    is convex in   p,   the optimal solution assumes 

the form 

Pi = 0,    for    i < i* 

and 
^i = 1,    for   i > i* , 

where    i*    is the smallest integer such that   ai - c(l) > 0.    If all 

a    - c(l) < 0,    then    i*   may be interpreted as equal to    n+1. 

Case ^; 

This case will be concerned with the allocation of the   p's 

when the   p's   can take on only a finite set of possible values 

TT = (TT^ Tr2, ...   , 7rk},   with   ^ < 7r2 < • • 

The allocation problem can now be written as follows 

< TT,. • 

subject to 

and 

maximize    cp^ P2»  •••   ' P^ 

Pl^Pa^'-'^Pn 

(1^) pi e TT 

r I 
I 

This  is the original allocation problem with expression (12) being 

replaced with (l^).    The four  cases considered for the original problem 

will be considered for this new model. 

13 
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Case V  - linear cost function: 

The arguments are identical to those presented for Case 1 up 

to and including the expression for determining   i*.    However,  for 

i < 1*,    the    p.    should be chosen as small as possible, whereas for 

i > i*,    the    p.    should be chosen as large as possible.    Therefore, 

the optimal values of   p.    subject to (1^) are 

and 

p^^ = 7^,    for    i < i* 

Pi = 7rk,    for    i > i* • 

Again,  this solution satisfies (15)  so that it is a solution to the 

problem. 

Case 2'   - quadratic cost function: 

The arguments are similar to those presented for Case 2, with 

i*    determined as in Case 2.    The optimal values of   p     subject to 

(iM  are 

and 

p.  » TT.,,    for    i < i* 
*i        1 

a.  - c 
' 7r1,    if   0 < -±T- < TT.^ 

a    - c 
Trr>    if   —^—= 7rr,    r = l,2,...,ki 

p.   =(    either   TT     or    TT ^^,     if ri     \ r r+1' 
^for    i > i* . 

a.   - c 
TT   < —-r— < TT i.    and   r < kj r b r+1 

a.  - c 

. \'   if  \ < -T- * 
iJ+ 

•» 
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Again this solution satisflea (13) so that it is a solution to the 

problem. 

Case y - convex cost function: 

The arguments are again similar to those presented for Case 3, 

with    1»    determined as in Case 3«    The optimal values of   p.    subject 

to (ill) are 

p   s w.,    for    i < i* 

and 

TT.,    if   p.  < TT.    in case 3; 

TT ,    if    p.  = T, r = l,2,...,k,    in Case 3j r i        r 

Pi =/ either   TT     or    TT   «i    if   Pi,    in Case 5, 

satisfies    TT   < p. < TT   ,    with    r < k; r      ri       r+1 ' 

rk,    if    pi > 7rk    in Case 5; 

>,    for    1 > i* . 

Again, this solution satisfies (15) so that it is a solution to the 

problem. 

Case h1 - concave cost function: 

The arguments are again similar to those presented for Case k 

with    i*    determined as  in Case k.    The optimal values of   p.     subject 

to (ih) are 

and 

p.   = TT ,    if   p.  = 0    in Case k ri        1 i 

p.   = TT, .    if   p. = 1    in Case h ri        k i 

Again,  this solution sa^isfi■ s (13)  so that it is a solution to the 

problem. 
15 
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h .      Example 

In the context of the stochastic sequential assignment problem, 

suppose   there are four men available to perform four Jobs occurring 

in sequential order     Each man has an associated   p.     and is labeled 

so that    Pi ^ Pn 5 P^ < Pk-    The "tyP6 Job'    x-»    is as8umed to be a 

uniformly distributed random variable over the range    (0,1000), i.e.. 

,    for   z < 0 

G (z)   =/ z/1000,    for    0 < z < 1000 

z > 1000  . 

Using this information, and equation (8); the required a^^ n are 
i 

obtained as follows: 

(1)     aoa-  -,    a11 = -t<» 

0,2 

(ii) { i^'~ L 
a2,P - * 

[y/lOOOldy =500 

(, i i i) 

a. , = -<» 
0,3 

r 1,2 
i5 -- J [y/l000]dy + a1^2[l - \^1)2'^ 

,3 = /    y/100G ^ + ^^^^i^) =625 

.5,5 

= 575 
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8-   ,     =    -«-■ 

(iv)< 

0.'+ 

"lA 

l2,k 

J)' 

■!"■ 

■ f ■ 

Ja2,5 

[y/l000]dy f a
1)5[1-Gx(alj3)] = 501+.6875 

ly/l000]dy + a1 5Gx(a1    )  + a
2)5U-Gx(a2 3) ] = 500 

[y/1000]dy t a2)3Gx(
a

2 3) - 695-5125 

Suppose that the first job to come in is a ^800 job.    The optimal 

policy calls for assigning the "best" man to this job., i.e.,    p. , 

since it lies in the interval (695• 5125100).    Suppose that the next 

job to arrive is a $450 job.    There are now 5 men available and the 

optimal policy calls for assigning man 2 to this job,  i.e.,    p2, 

since it lies in the interval (575,625J      Suppose that the next Job 

to arrive is a ^-00 job-    There are now 2 men available and the optimal 

policy calls for assigning man 1 to this job,  i.e.,    p,,    since it 

lies in the interval  (0.500]      The remaining man, man 5 (associated 

with    p,)    is then available for the last assignment. 

It should be noted that the assignment did not depend upon the 

values of the    p's    but only on the ordering.     Suppose that the choice 

of    p's    are available to the decision maker, and the cost to retain 

.  . 2 
a man having an associated    p    is given by    c(p; » 50p + 500p . 

The results for Case 2 of Section 5 are then applicable.     It  is 

necessary to determine the    a..    Recall that    a.  = a.       ,    so that 11       i,n+l 

the    a.   p    are required.    These are as  follows: 
i,5 

17 
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a,  - a 
l "   1,5 

a^ = a 
2,5 

a,  = a 
5,5 

a,   = a 
^5 

258.^ 

1+21.4 

578.6 

7^1.7 • 

Thus,    a    - 50    is positive so that    1* = 1.    Therefore, 

a.   - 50 
p.  = mm I —5-rrr ^i I     300 

-, 1 ,    i.e., 

p.  = 0.69,    and 

P2 = P5 = P^ = i • 

5.      General Assignment Problem 

The previous sections were concerned with a very special form 

of the assignment problem,  i.e., if a    "p"   man is assigned to an 

"x"    job, the expected reward is given by   px.    The general assignment 

problem is concerned with an expected reward function of a more 

arbitrary form.    In particular, denote by   r(p,x)    the expected reward 

if a    "p"   man is assigned to an    "x"    Job.    The analogous characteri- 

zation of   f(p ,p2,...,p  |x)    presented in equation (k) is now given 

by 

(15)    f(p1,P2,..-,Pnlx) = max[r(pk,x)+f(p;L,p2,...,Pk_;L,Pk+1,...,Pn)]  . 

Also, it should be noted that 

(16) f(p 

and 

1> P2,   •••   , Pn) =Jf(P1' P2'   •••  ' Pnlx)dGx(x)  , 
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(17) f(p1U) - r(t,i'x) ■ 

The characteri«tlon of the form of the optimal »selgnment policy ie 

embodied in Theorem J. 

Theorem j. Assume that r(p,x) is differentiable and 

(18) ^ | f^>x) ^ 0 ' 

for each   p^P^  • • •   , Pn    ^ere exist nUinberS 

--a0ln
<al,n^a2,n^-"-an-M<an,n 

such that whenever there are   n    stages to go and probabilities 

Pi 5 Pp = '" = pn   tllen ^e ^^i"181 choice in the initial stage is 

to use    p.     if the random variable    X    is contained in the interval 

^ai.l,n>ai,nJ' 

Proof.    For any    p   > p     and   x« > x ,    expression (l8) indicates 

that 

t 
or equivalently 

(19)      r(p2,x2) - rlp^xg) > r(p2,x1) - r(p1,x1) . 

Now, let 

x. = suplx: f(P1, P2, ..- .. Pnlx) = ^p^x) + f(P2, Py •.• > Vn» 

and let x* be - if the above set is vacuous. (Note that 
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t'i'p   .p   ,     ..   , p )    may easily be shown to be continuous by inductioni 
it- u 

and h'Mic .   if   x«    Is  finite then the supreraum is actually a maximum.) 

Suppose    x   ■ x«,    then let,    x c (x,x|]   be such that    f(p1,p2,... ,pn|x) 

r^p ,x;   +■ f(p2,p.,... ,p ).     Now for any    i > 1,    expression (19) 

can   b ■ wr Ltti n at; 

r{Pj,x1)  - r(p;L,x;L) > r(p,,x)  - r(p1,x)  , 

or alternatively, 

i(pi.x; + f(p2,...,pn)   - r(p ,x) - f(P1>P2>'-'.Pj_1*Pj+1>«-->Pn) 

> r(p1,x1)  + f(p?.....Pn)   - rivyXj) - f(P1*P2»---*Pj.1>Pj+i>•••>?„)   • 

However, the rxght-hand side of the inequality must be greater than 

or  equal to zero since 

r(p1,x1)  - f(p2,  ...   . Pn) = f(P1i P2^   •••   > Pfll^l^   • 

iience,   for    x < x* 

r«pI,x/   i- f'p2>...,pn) > r(p,>x)  + f(Pi,P2,",,P
(j-l

,p-)+i',,,,Pn^  ' 

Therefore.   i+. fellows tnat the optimal policy uses    p ,    if and only 

If,     x < x*.     By defining    x4    as 

x' = s-jpi'x > xr;:  f'P1 Pp,..   ,Pn!x} = r(p2,x) + f(p1,p5,...,pn)} , 

to iowi   from tne  sara^  reasoning that, the optimal policy uses    p«, 

and  .nily  If,    x  •,   Cx^.-x*].    Similar reasoning completes the proof. 

.'■■•■•.-rai   -onuTi'.Tit.s are  in order. 

20 
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i)    Although Theorem 3 appears to be similar to Theorem 1,  it 

differs in that the    a's    are not,  in general, independent of the 

p's,    nor are the    a's    easily calculable. 

ii)    For the allocation problem in the general assignment model, 

a result   similar to that given for Case k may be obtained.     In parti- 

cular,  if    c{p),.    the  cost to retain a man having an associated    p, 

is concave, and    r(p,x;    is convex,  then the optimal    p's    are either 

zeros or unes.    This follows by showing that    f(p-,»Pp,   ...   , p )    is 

convex  (in the vector) so that the objective function 

f(p^ p2; ... , pn} - _£ cCp^ 

is convex. The result that fCp-.jPpj ••• > P ) is convex is embodied 

in Lemma 2. 

Lemma 2. If for all x, r(p,x) is convex in p, then f (p^Pg** • • >Pn) 

is convex (in the p vector). 

i 
1 
1 
I 

Proof. A proof by induction on the number of terms in the p vector 

is employed. 

For any fixed x, it will be shown that f(p -Pg, ... , Pnl
x) 

is convex. From (l7'l, f(p1|x) is convex. Assume that 

f(p ,Pp, . . , p jx) is convex for all m< n-1. It follows that 

(20) r(pk.x) .f(Pl, p2, ... , p^, pk+1, ... , pn; 

is convex for all k - 1,2, ,, . , n. Hence, the maximum, over k, 

of expression (20) is also convex since the maximum of a finite number 

of convex functions is also convex. Using equation (15)> 
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^(p^Pp. ••• > P U) is seen to be convex. The lemma is then proved 

by employing equation (l6). It can be noted that a similar proof 

can be used to show that f(p »p-, ... , p ) is monotone (in the 

p vector) if r(p,x)  is monotone in p. 

iii) Throughout this paper it has been assumed that the number 

of assignments is equal to the number of men. This restriction can 

be relaxed easily. Let m denote the number of assignments and let 

n denote the number of men. If n > m, choose only those m men 

having the highest p's associated with them (assuming that r(p,x) 

is non-decreasing^.  If n < m, add (n-m) "pseudo men" having p's 

equal to zero associated with them (assuming r(0>x) = 0). 

22 
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